Top / SJS / 2016 / ex08

SJS2016 ex08 [edit]

これまでの分 [edit]

  • 以前の分を全て報告してokをもらってから,今回分にすすみましょう.

課題A [edit]

手書き数字の認識 (2) -- MNISTの最短距離法による識別 --

mnist.py を利用して,最短距離法で10クラス手書き数字識別のプログラムを書こう.ただし,

  • training data を使ってクラス毎の平均を計算
    • 課題とはしないが,クラス毎の平均を画像として眺めてみるのも面白いかも
  • trianing data を識別したときの誤識別率を計算する.たとえばデータ数が100個で正解数が95個なら誤識別率は5%.
  • test data を識別したときの誤識別率を計算する.平均は,training data から求めたものを使うんですよ(為念).
    • 課題とはしないが,混同行列(confusion matrix)を求めると,どの数字とどの数字を間違えやすいかがわかって面白いかも.クラス数xクラス数の行列で,(i,j)要素は,「正解はi番目のクラスなのに識別結果はj番目のクラスだった」ものの数.この行列の対角要素の和をデータ数で割ったものが正識別率となる.

トップ   編集 凍結 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS
Last-modified: 2016-10-31 (月) 15:44:12 (384d)