A robust classifier combined with an auto-associative network for completing partly occluded images

Takashi TAKAHASHI and Takio KURITA

Neural Networks, vol.18, pp.958--966, 2005


This paper describes an approach for constructing a classifier which is unaffected by occlusions in images. We propose a method for integrating an auto-associative network into a simple classifier. As the auto-associative network can recall the original image from a partly occluded input image, we can employ it to detect occluded regions and complete the input image by replacing those regions with recalled pixels. By iterating this reconstruction process, the integrated network is able to classify target objects with occlusions robustly. To confirm the effectiveness of this method, we performed experiments involving face image classification. It is shown that the classification performance is not decreased even if about 30% of the face image is occluded.

トップ   編集 凍結 差分 履歴 添付 複製 名前変更 リロード   新規 一覧 検索 最終更新   ヘルプ   最終更新のRSS
Last-modified: 2014-08-13 (水) 13:45:19