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Abstract

We investigate a self-organizing network model to
account for the computational property of the in-
ferotemporal cortex. The network can learn sparse
codes for given data with organizing their topo-
graphic mapping. Simulation experiments are per-
formed using real face images composed of different
individuals at different viewing directions, and the re-
sults show that the network evolves the information
representation which is consistent with some physio-
logical findings. By analyzing the characteristics of
the neuron activities, it is also demonstrated that the
present model self-organizes the efficient representa-
tion for coding both of the global structure and the
finer information of the face images.

1 Introduction

The temporal cortex is known to be responsive for
complex patterns such as human faces. Recent exper-
imental studies revealed some properties of neurons
in this cortex. For instance, Young and Yamanell]
investigated the response properties of face respon-
sive neurons in the inferotemporal cortex and showed
that facial features are represented as the ensemble
of sparse neuron activities. They called such cod-
ing scheme “sparse-population coding.” On the other
hand, Wang et al.[2] reported that the inferotempo-
ral cortex consists of columnar modules and the acti-
vated region systematically moves on the cortical sur-
face with the change of object views. These findings
indicate that, in the inferotemporal cortex, objects
are encoded as ensembles of sparse neuron activities
preserving the topological relationship among similar
object views.

Aiming to reveal underlying relationships between
the information coding scheme and the computa-
tional function of the visual cortex, many researchers
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have proposed the self-organization models. However,
there seems to be no model which can explain both
of the above findings, sparseness of neuron activities
and topographic mapping of object views. For ex-
ample, Olshausen and Field[3] introduced a learning
algorithm for sparse coding. It was shown that, by
seeking sparse code for natural images, the network
could develop a set of receptive fields similar to those
found in the striate cortex. Although such network
successfully captures sparse nature of the input data,
topographic structure is not incorporated. On the
other hand, Suzuki and Ueda[4] proposed a model
of feature columns based on modular architecture of
the self-organizing map networks. They showed that
the network self-organized the topographic maps of
object views. However, such network cannot develop
sparse-population coding since the learning algorithm
is based on winner-takes-all mechanism favoring a
representation in which only one neuron is activated
for each input.

In this paper, we investigate a self-organization model
which evolves the information representation being
consistent with the above physiological findings. The
network model is based on Olshausen and Field’s effi-
cient coding scheme[3], but an additional constraint,
“topographic smoothness,” is incorporated so as to
emerge a topographic map. The network is trained
using real face images composed of different individ-
uals at different viewing directions. The simulation
results show that the network evolves the informa-
tion representation which is consistent with the above
physiological findings. It is also confirmed by analyz-
ing the characteristics of the neuron activities that
the present model evolves the efficient information
representation for coding both of the global structure
and the finer information of the face images.

In the following section, we explain our self-
organizing network model. The learning method for
sparse coding is first described, then the topographic
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smoothness constraint is introduced. Section 3 shows
the simulation results obtained by the present net-
work using real face images. The properties of the
network is further examined in Section 4. Then Sec-
tion 5 concludes the present work.

2 Self-organization model

2.1 Network
Following Olshausen and Field[3], we investigate a
simple network model:

€Tr = Zaiwi (1)
i=1

where « is an n-dimensional vector denoting the input
to the network, a; denotes the activity of the i-th neu-
ron, and w; is an n-dimensional vector composed of
the connection weights between the i-th neuron and
the input. This model is based on the assumption
that the input data can be represented in terms of
a linear combination of the basis vectors(weight vec-
tors). Given an input, the network encodes it as the
coefficients(activities of the neurons) of Equation (1).
The objective of the network is, given a set of data,
to find the basis vectors giving efficient codes which
satisfies some given criteria. Unsupervised learning is
adopted for seeking the optimal basis vectors and the
coefficients.

2.2 Efficient coding and sparseness

One of the criteria for efficient coding is how well the
code describes the input. It can be measured by the
squared error between the input and its reconstruc-
tion by the network:

2

E= @)

m
xr — E a;Ww;
i=1

It is known that the minimization of E gives the re-
sults which is substantially equivalent to those ob-
tained by applying principal component analysis to
the input data.

As an additional criterion for efficient coding, Ol-
shausen and Field[3] proposed the “sparseness” cost
for seeking sparse codes. The sparseness cost func-
tion, S, is given by

S=- s(a) (3)

i

where s(z) is a nonlinear function such as |z,
—exp(—2?), and log(1 + 2%). The cost S favors the
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codes which consist of minimal number of non-zero
coefficients. As a result, the network seeks the coefhi-
cients which are statistically independent each other
over an ensemble of input data. In the case that the
data contains some forms of higher-order statistical
structure as found in natural images, it can be cap-
tured by using this sparseness cost function.

2.3 Topographic smoothness

In order to organize a topographic mapping in the
above network, it is necessary to incorporate a con-
straint for preserving the topographic structure of
data. One of the approach is to bring each basis
vector close to those of its topological neighborhood.
Although Self-Organizing Map(SOM) algorithm[5] is
able to organize a topographic map by adopting this
approach, it evolves winner-takes-all type represen-
tation in which only one neuron is activated at a
time. When such algorithm is applied to the data
composed of multiple views of several objects, each
neuron becomes to respond to a specific view of a
specific object[4]. Such coding scheme is inconsis-
tent with physiological findings as mentioned above,
therefore, we investigate a different approach. In this
paper, we incorporate the “topographic smoothness”
cost function which constrains the neuron activities to
be as smooth as possible on a two-dimensional map.

Let us start with considering a continuous sys-
tem in which activities of the neurons form a two-
dimensional field, a(x,y). In this case, the topo-
graphic smoothness can be measured by using the
first order differentials with respect to z and y:

da\> da\>
T=- — | +| = dzd 4
//Kaw) <3y> v
Hence, the smoothness constraint for a discrete model
is given by approximating the differentials. Assuming
the neurons are arranged on a two-dimensional square

lattice with unit intervals, the topographic smooth-
ness is derived:

T = 8 Z {(ax,y - a:c+1,y)2 + (@ay — a”’y"'l)ﬂ

T,y

(5)
where a,, denotes the activity of the neuron at po-
sition (x,y) on the lattice. The effect of maximizing
this smoothness can be seen by taking the derivative
of T with respect to az y:

oT
Oag,y

= — Z h(my y7 x’? y/)a’xlvy/ (6)

Iyt
x5y

where h(z,y,z’,y’) is a function which determines the
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interaction between neighboring neurons:

1 z=2a"andy =1
1 x:x’and|y—y’|=10T
/ N __ -
h(z,y,2',y") = 4 |x—x’|:1andy=y'
0 otherwise

(7)

Consequently, Equation (6) forces the activity level of
each neuron to be equal with its neighborhood neu-
rons. By combining this smoothness cost to learning
of efficient codes, the coeflicients, the neuron activi-
ties, are biased so that nearby neurons are activated
simultaneously. As the result, the network organizes
a topographic map of data in which similar patterns
activate similar ensemble of neurons but distinct pat-
terns activate different neurons at distant location in
the map.

2.4 Learning
Learning is accomplished by minimizing the total cost
function:

F=E-AsS— AT (8)

where Ag and Ap are positive constants. The learning
process consists of two phases. First, for each input
data, I’ is minimized with respect to a;. Then w;
is modified by gradient descent on F' averaged over
the set of input data. In the first phase, the optimal
value of a; is sought on condition that

4 = exp (—%bf) (9)

in order to constrain a; to be in [0,1). Accordingly,
instead of a;, the parameters b; are evolved by the
following differential equation:

db; oF

P = _nbc?_bi (10)
where 7, denotes the learning rate. Equations (9) and
10) can be regarded as the equations defining the tem-
poral dynamics of the neuron activities when a static
stimulus keeps being presented for the network[6]. On
the other hand, the learning rule for the second phase

is given by
=Ny {( =— 11
dt 4 < 5‘wz > ( )

where 7,, is the learning rate and ( ) denotes the en-
semble average over the input data. The learning rate
Mw 18 set to an appropriately small value for stability
of learning. This process can be regarded as learning
at longer time scale. Furthermore, in the following
simulations, each basis vector was normalized to unit
length after each learning step.
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3 Simulation

In this section, we show some simulation results using
real face images.

3.1 Experimental conditions

The data set was composed of 32 x 32 pixel face
images of 12 individuals with different view direc-
tions(Figure 1). The face images were taken at 25
viewing directions(at every 5 degrees ranging from
—60 to 60 degrees), and their position and size were
normalized. The total number of the data was 1,500
(12individuals x 25views x 5sets). Out of these images,
nine views(every 15 degrees for each individuals) were
chosen as learning data. Hence the learning data set
consisted of 108 images. The other images were used
for examining the properties of the network(see Sec-
tion 4). To reduce the dimensionality of the learning
data, each data was converted into a 100-dimensional
vector by principal component analysis. Then the in-
put vector, &, was obtained by normalizing it so that
the mean of x has unit length. In the results shown
below, the inverse of these preprocessing steps were
performed for visualization.

The network is trained so as to acquire efficient codes
for the above data by minimizing the cost function
(8). The parameters A\g and Ay were set to 0.01 and
0.4, respectively, and s(z) = |x| was chosen as the
function for Equation (3). The dimensionality of the
input, n, was 100, and the number of neurons, m,
were set to 36. As the topology of the neurons we
chose a two-dimensional torus lattice to avoid bound-
ary effects. For each of the input data, the parame-
ters b; were evolved by gradient descent method with
momentum term. The learning rate 1, and the mo-
mentum coefficients were set to 0.1 and 0.8, respec-
tively. The initial values of b; were randomly chosen
so that each a; became a small random value, and
the updating step was iterated 100 times. Then the
basis vectors w; were also modified by gradient de-
scent method with momentum term. The learning
rate 71, and the momentum coefficients were set to
0.01 and 0.8, respectively. The learning step was re-
peated 1,000 times starting from random initial val-
ues.

3.2 Results

Figure 2(a) shows the basis vectors of 6 x 6 neurons
acquired by the network. None of them correspond to
a specific view of a specific person, however, we can
find rough structure in their arrangement. The ba-
sis vectors around the upper left corner in the figure,
around the bottom, and around the upper right seem
to correspond to the faces viewing right, front, and
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(a) Frontal views of 12 individuals.
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(b) Images at different viewpoints. Top: mean faces of
12 people. Center and Bottom: two sets of examples.

Figure 1: Samples of the face images used in the simu-
lation.

left, respectively. To confirm this observation and to
examine the response property of the network, activi-
ties of the neurons were computed. Figure 2(b) shows
the resulting activity patterns. The figure shows that
neurons in a spot region are activated for each face
image and the activation spot systematically shifts
with rotation of the faces. Furthermore, it is also
shown that the images of different individuals at the
same direction activate the neurons in similar area
but evoke different activation patterns. These results
mean that each face image is encoded by the ensemble
of several neuron activities and the network possesses
the topographic map of the facial views, which seem
to be qualitatively consistent with the physiological
findings mentioned in Section 1.

4 Discussion

The above simulation results imply a hierarchical cod-
ing scheme of the network model: global changes of
the data are represented as the systematic shifts of
the activation spot, while finer information is coded
as the ensemble activity of the neurons in each spot
region. In this section, we further discuss the charac-
teristics of the information representation by calcu-
lating some quantities which reflect the organization
of the neuron activities.
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(a) The learned basis vectors. They are arranged
according to the topology of 6 x 6 torus lattice.

(b) Activity patterns. Rows correspond to the three
sorts of the data shown in Figure 1(b). Panels in each
row show the activity patterns of 6 x 6 neurons. The
gray level indicates the magnitude of the activity. Black
means zero, while white is one.

Figure 2: Simulation results.
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4.1 Reconstruction error and discriminability
We examine the information representation of the
network in terms of the reconstruction error and the
“discriminability.” Suppose that a set of vectors is
given with class labels and each vector can be clas-
sified among K classes. Then the discriminability
measures the distance among clusters of the vectors
corresponding to each class. By calculating the dis-
criminability in several conditions, it is able to charac-
terize the information representation of the network.

For a set of m-dimensional vectors composed of m

neuron activities, the discriminability, d, is defined
by

K 2 =112

>kt llar —al

T K N _
Do vy i lawg — a2

where ay,,; corresponds to the [-th data in class k, and
N}, denotes the number of data in the class. The vec-
tors ay and a denote the mean of ay; and the mean
of the all activity vectors, respectively. We calculated
the discriminability values for the face data in two
different conditions, “view direction” condition and
“identity” condition. In the view direction condition,
the face images were divided into five classes accord-
ing to their viewing directions. On the other hand,
in the identity condition, they were divided into 12
classes according to their identities. Since the vari-
ation of face images over different viewing directions
is larger than the difference between individuals fac-
ing the same direction, only coarse information is re-
quired for discriminating the viewing directions, while
finer information is required for identifying the indi-
viduals.

(12)

Table 1 shows the reconstruction errors and the dis-
criminability values of the three different networks,
the present model(with T'), the same network with-
out the topographic smoothness(without 7'), and the
conventional SOM. These values were computed for
the test data described in Section 3.1. In the case of
SOM, after finding the basis vectors, w;, the coeffi-
cients, a;, were calculated by using Gaussian softmax
function:

W o (=l — w;||?/20%)
Ciiexp (<l — wir[2/202)

provided that o = 0.25, which gave the best recon-
struction error. Both of the networks with and with-
out the topographic smoothness cost achieve consid-
erably smaller errors and higher discriminability than
SOM. This might reflect the difference of their cod-
ing schemes. Although a kind of topographic map
emerges in the present network, the network can en-
code the images more precisely using the ensemble of

(13)
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Table 1: Reconstruction errors and discriminability val-
ues of the three different networks. The dis-
criminability values are shown as the relative
values.

| || error | view | identity |

without 7" || 0.085 | 0.621 1.05
with T 0.123 1 1
SOM 0.271 | 0.177 0.511

several neuron activities unlike SOM. It is also show
that the discriminability for global information is en-
hanced without degrading that for finer one by incor-
porating the topographic smoothness. These results
demonstrate that the present model can develop the
representation which is useful for describing both of
the global structure and the finer information of the
face images.

4.2 Transient properties of the neuron activi-
ties

Recently, Sugase et al.[7] analyzed the transient re-
sponse properties of face responsive neurons in the
inferotemporal cortex. Their results suggest hierar-
chical information coding in time domain: the ini-
tial firing of the neurons encode coarse information
while the subsequent firings encode finer information.
Okada et al.[8] reported that the retrieval dynamics
of an associative network model can explain such be-
havior. Because the present model also defines the
temporal dynamics of neuron activity as described
in Section 2.4, it is able to depict the change of the
information representation scheme by computing the
reconstruction error and the discriminability values
at each time step. Figure 3 shows the results. It is
seen that the discriminability for the global informa-
tion rises and converges at earlier time step while that
for the finer information requires longer time steps.
Such characteristics resemble the response properties
of the neurons analyzed by Sugase et al. though their
stimulus patterns were different from our face images.

5 Conclusion

We investigated a self-organizing network model to
account for several characteristics of neurons in the
temporal cortex in terms of their information coding
scheme. The simulation studies confirmed that the
present model could reproduce the similar results to
those obtained by experimental studies. The main
results concern the emergent properties of the neu-
ron activities evolved by the proposed learning algo-
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(a) Mean reconstruction error.
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(b) Discriminability values. The vertical dashed lines in-
dicate the time when the discriminability values reached
the 80% of their maxima.

Figure 3: Temporal changes of information representa-
tion.
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rithm. It was shown that the neurons represented the
global structure(viewing direction) and finer informa-
tion(each view of each individual) in a hierarchical
way. The global changes were represented as the sys-
tematic shifts of activation spot in the topographic
map, the finer information were encoded as the en-
semble of neuron activities. Since both of the learn-
ing processes for sparse coding and for topographic
smoothness can be realized by biologically plausible
implementation, it might be possible to interpret the
above results connecting to the computational func-
tions of the temporal cortex.
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