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Abstract

We investigate a method to navigate a mo-
bile robot by using self-organizing map and
reinforcement learning. Modeling hippocam-
pal place cells, the map consists of units ac-
tivated at specified locations in an environ-
ment. In order to adapt the map to a real-
world environment, preferred locations of
these units are self-organized by Kohonen’s
algorithm using the robot’s actual position
data. Then an actor-critic network is pro-
vided the position information from the self-
organized map and trained to acquire goal-
directed behavior of the robot. It is shown
by simulation that the network successfully
achieves the navigation avoiding obstacles.

1 Introduction

It is reported that neurons in the dorsal hippocam-
pus of the freely-moving rat are related with the
animal’s position in an environment[1, 2]. These
neurons fire when the animal is located in a re-
stricted portion of an environment (place field) but
not in other parts[1]. These neurons are called
“place cells”. The place field of each place cell is
determined by cues such as lights, sounds and feels,
and is independent of distal cues fixed to the earth’s
axis such as geomagnetism[3].

Recently, Foster et al. proposed a model of how
hippocampal place cells might be used for spatial
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navigation in watermaze tasks[4]. The model uses
Temporal Difference (TD) learning[5], which is a lo-
cal, incremental, and statistically efficient connec-
tionist algorithm. A reward-based “actor-critic”
network was applied to a navigation task, using
place cells to provide information about state. By
simulation experiments, it is shown that the actor-
critic can learn the reference memory task in which
the escape platform occupies a single location and
rats gradually learn relatively direct paths to the
goal over the course of days.

In this paper, we present preliminary experimen-
tal results on a mobile robot navigation using this
model. Figure 1 shows the mobile robot used in the
experiments. The robot has ultra-sonic sensors, and
it can autonomously move around the floor avoiding
obstacles. Although Foster et al. used a simplified
model in which each place cell was systematically
arranged on the grid, such map representation is in-
efficient for navigation in real-world system because
many cells are necessary for fine map. Here the map
is self-organized from actual position data obtained
by the mobile robot. By this self-organization, we
can obtain a space-variant map in which frequently
visited places are represented with fine resolutions.
Then an actor-critic model is trained to navigate
the robot to a specific goal by using reinforcement
learning on actor-critic model. The actor selects
the next motion direction at each time step and
the critic predicts the value function to evaluate the
currently selected action. Both units receive the ac-
tivities of place cells as input. By experiments on
mobile robot navigation, it is confirmed that the
network achieves the navigation avoiding obstacles.
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Figure 1: The mobile robot Nomad.

Self-organization of place map is explained in Sec-
tion 2. Section 3 is for the navigation of the mobile
robot using the self-organized place cells. Experi-
mental results are shown in Section 4.

2 Self-organization of place
map

2.1 Place cell and self-organizing
map

From physiological studies, it is known that the ac-
tivities of hippocampal place cells of rat can be
represented as Gaussian functions of location in
space[6]. If a rat is at position p, then the activ-
ity of place cell i = 1, . . . , n is given by

fi(p) = exp
(
−‖p − si‖2

2σ2

)
(1)

where si is the preferred location of the i-th cell,
and σ is the parameter which determines the activ-
ity tuning of the cell. Foster et al. used such model
to explain how hippocampal place cells might be
used for spatial navigation in watermaze tasks[4]. In
this study, each si was systematically arranged on a
grid and fixed beforehand. However, such map rep-
resentation is inefficient for navigation in real-world
since vast number of place cells are required to orga-
nize a fine map. It is necessary to organize the map

which has fine representation for frequently visited
place but coarse representation for others. There-
fore, we investigate a method to self-organize the
map from actual position data obtained by the mo-
bile robot. The preferred locations of place cells si

are self-organized by using Kohonen’s algorithm[7]:

∆si = ηh(i, i∗)(p − si) (2)

where h(i, j) is the neighborhood function which de-
termines the topology of the map, i∗ denotes the
index of the winner cell determined as

i∗ = arg min
i

‖p − si‖ (3)

and η is the learning rate.

2.2 Experiment

We have done an experiment using the mobile robot
shown in Figure 1. Figure 2 (a) shows the experi-
mental field and the motion trajectory of the robot.
At the beginning of the experiment, the robot was
located at the origin heading the east. Then it
wandered in the field recording position informa-
tion by dead-reckoning. The robot was equipped
with ultra-sonic sensors, and it could autonomously
move around the floor avoiding obstacles. From this
experiment, we obtained 5,327 position data. They
were used to organize the place cell map by Koho-
nen’s algorithm. The number of place cells n were
set to 20×20 composing two-dimensional neighbor-
hood relation. Figure 2 (b) shows the result.

3 Reward-based navigation

3.1 Actor-critic model

This section describes the navigation module which
determines the robot’s goal directed behavior. The
module consists of two networks, the actor and the
critic. The actor selects the next action among eight
possible actions {A1, . . .A8}, each of which corre-
sponds to one motion direction(e.g., north, north-
east, east), at each time step. The critic predicts the
value function, the discounted total future reward
that is expected, to evaluate the currently selected
action. Both units receive the activities of place
cells as input, and they are trained using Temporal
Difference(TD) learning[5]. If the robot reaches the
goal at time t, it receives the reward R(t) = 1; other-
wise R(t) = 0. In addition, R(t) = −1 is given if the
robot makes an invasion to the prohibited area(walls
and obstacles).
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(a) The trajectory of the robot.
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(b) The self-organized map.

Figure 2: Experimental environment and the self-organized map of the place cells.

3.2 Critic

We define an output of the critic when the robot is
at position p as follows:

C(p) =
n∑
i

vifi(p) (4)

where vi is the weight between the i-th place cell and
the output cell. The critic learns the value function
by TD learning, that is, the weights are updated so
that the prediction error(TD signal) is reduced:

δ(t) = R(t + 1) + γC(p(t + 1))− C(p(t)) (5)

where γ denotes the discount factor. Then the up-
dating rule of the weights vi is given by

vi(t + 1) = vi(t) + αδ(t)fi(p(t)) (6)

where α denotes the learning rate.

3.3 Actor

The actor stochastically selects one action Aj ac-
cording to the following probabilities:

P (Aj|p) =
exp(2aj)∑n

k=1 exp(2ak)
(7)

where aj denotes the output of the j-th action cell
corresponding to Aj . The output aj is computed as

aj(p) =
n∑
i

wjifi(p) (8)

where wji is the weight between the i-th place cell
and the j-th action cell. Then the updating rule of
the weights wji is given by

wji(t + 1) =




wji(t) + βδ(t)fi(p(t))
if Aj was chosen,

wji(t) otherwise.
(9)

4 Simulation

In this section, we describe some simulation results
of virtual robot navigation using the self-organized
map and the trained actor-critic network. We sim-
ulated 1000 trials to train the actor-critic network
by TD learning. The starting position of the robot
was randomly chosen for each trial, and the goal
was defined as the square region located around
x = 0.4, y = 0.8. Trials were aborted if the robot
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Figure 3: Learning Curve. The ordinate indicates
the number of motion steps to reach the goal.

failed to reach the goal within 500 steps. The dis-
tance of one motion step was set to 0.049, and the
width of each place field σ was set to 0.041. The
learning rates α and β were set to 0.1, and the dis-
count factor γ was set to 0.99.

Figure 3 indicates the learning curve of TD learn-
ing. During these 1000 trials, the robot successfully
reached the goal 980 times. Learning converged less
than first 200 trials. After the convergence, the
robot could reach the goal within at most 41 steps.

Figure 4 shows the map which depicts the motion
direction selected by the actor at each position. It
is shown that the actor achieves the goal directed
navigation avoiding the obstacles. There is a divide
around x = 0.4, y = 0.0, and paths are divided into
two routes, eastern route and western one, depend-
ing on the starting position.

Figure 5 shows one example of navigation simu-
lation. In this case, the robot reaches the goal at
26th step.

5 Conclusion

This paper presented a network model for navigat-
ing a mobile robot. It was shown that the self-
organizing map could acquire efficient representa-
tion for robot localization from the position data
obtained in a real environment. Simulation stud-
ies also showed that the actor-critic network could
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Figure 5: An example of the navigation.

learn how to navigate the robot utilizing such rep-
resentation. Future work will include extensions of
this approach for the case the other sensor informa-
tion(e.g. vision, auditory) are available. It is also
a problem to develop a method which incorporates
the self-organization process of place cells with re-
inforcement learning.
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Figure 4: Action Map. Each small arrow indicates the motion direction which has the highest probability
P (Aj|p) at the center of each place field. The arrows are plotted alternately for conciseness.
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