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Abstract There are two major approaches to content-based image retrieval using local image descriptors. One is
descriptor-by-descriptor matching and the other is based on comparison of global image representation that describes
the set of local descriptors of each image. In large-scale problems, the latter is preferred due to its smaller memory
requirements; however, it tends to be inferior to the former in terms of retrieval accuracy. To achieve both low
memory cost and high accuracy, we investigate an asymmetric approach in which the probability distribution of
local descriptors is modeled for each individual database image while the local descriptors of a query are used as is.
We adopt a mixture model of probabilistic principal component analysis. The model parameters constitute a global
image representation to be stored in database. Then the likelihood function is employed to compute a matching
score between each database image and a query. We also propose an algorithm to encode our image representation
into more compact codes. Experimental results demonstrate that our method can represent each database image
in less than several hundred bytes achieving higher retrieval accuracy than the state-of-the-art method using Fisher
vectors.

1 Introduction

This paper addresses the problem of content-based im-
age retrieval based on local image descriptors. By us-
ing expressive local image descriptors such as SIFT
[1], even simple descriptor-by-descriptor matching can
achieve high retrieval accuracy. However, there are two
major difficulties when applying this approach to a large-
scale problem. One is the computational cost for match-
ing every local descriptor in the database with those ex-
tracted from a query image. The other is the memory
cost for storing immense numbers of local descriptors in
the database. To solve the former problem, many stud-
ies have been devoted to developing methods that apply
approximate nearest neighbor (ANN) search [2, 3, 4, 5].
On the other hand, one approach to avoid the later prob-
lem is to develop a compact global image feature rep-
resentation that preserves the information of the set of
local descriptors extracted from each image. The bag-of-
features (BoF) or bag-of-visual-words is the most com-
mon of this type of approach [6]. This paper investigates
a high-performance image retrieval method that utilizes
an efficient and compact image feature representation.
In a typical BoF-based image retrieval method, the dis-

tributions of local descriptors are summarized into his-
tograms that count the occurrence of visual words. These

histograms are used as image-wise features to measure the
distance between images. Given a query image, this dis-
tance is used to compute the matching score between the
query and each of the images in the database. This BoF
image representation is rather compact compared to the
set of raw local descriptors, and thus reduces the memory
costs. However, the BoF-based method is not competitive
with ANN-based methods in terms of retrieval accuracy.
Jégou et al. showed that the BoF approach can be inter-
preted as the voting of local descriptors and proposed a
method that combines the BoF approach with an ANN
search [7, 8]. They reported that their method shows
significant improvement in image retrieval accuracy com-
pared to the conventional BoF-based method.

There are also various methods that represent image
features in distinct ways from the BoF approach. Jégou
et al., for instance, proposed the image feature repre-
sentation called vector of locally aggregated descriptors
(VLAD) [9, 10]. They also investigated the Fisher Vec-
tor (FV) method [11, 12] for image retrieval. It has
been demonstrated that the VLAD and FV methods
give higher accuracy than the conventional BoF approach
[9, 10]. It has also been demonstrated that these image
features can be encoded into less than several hundred
bytes per image without degrading performance by using
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their product quantization method [5, 9, 10]. To the best
of our knowledge, the combination of FV image repre-
sentation and this encoding method by Jégou et al. is
a state-of-the-art approach that achieves both high accu-
racy and reduced memory costs. Recently, an extension
of VLAD called the vector of locally aggregated tensors
(VLAT), which obtains improved accuracy, has been re-
ported [13, 14]. However, the VLAT method did not in-
volve the encoding of image features. In this paper, we
examine a method for attaining superior performance in
terms of both retrieval accuracy and the length of codes
for representing image features.

Higher retrieval accuracy achieved with the FV image
representation is considered to be due to the fact that
the FV can describe the distribution of local descriptors
in greater detail than BoF. In a typical FV set up, the
generation process of local descriptors is modeled by a
Gaussian mixture model (GMM). Then, the FV is de-
fined such that the dot product between the two vectors
becomes a similarity measure between the model param-
eters of two corresponding images, such as the mixture
weights, means, and covariance matrices of the GMM.
This is in contrast to the BoF representation, in which
the distribution is described only by counting the num-
ber of local descriptors assigned to each cluster.

Both of these approaches adopt a common scheme for
representing image features in identical dimensions for
both database images and queries. In image retrieval,
there exists asymmetry such that the feature of each
database image is desired to be described in compact di-
mensions; however, this is not the case for a query. We
can distinguish database features from query features so
long as some similarity can be evaluated between a query
and each database image. If we can combine exclusive
compact feature representation for database images with
a rich representation for queries, such as asymmetric im-
age representation, we could achieve both high retrieval
accuracy and low memory costs.

In this study, we examine an asymmetric approach in
which the probability distribution of local descriptors is
modeled for each individual database image while the lo-
cal descriptors of a query are used as is. We adopt a
mixture model of probabilistic principal component anal-
ysis (probabilistic PCA or PPCA) as the model. Then,
the likelihood function of each model is employed as a
matching score to measure the similarity between a query
and each database image. In this approach, the model
parameters of each PPCA mixture model constitute a
feature of database images. We further introduce some
constraints and approximations into the model for im-
proving computational efficiency. We refer to the image
feature representation in this approach as a mixture of
subspaces image representation. We demonstrate that the
image retrieval method utilizing this representation out-

performs the method using FV representation. In addi-
tion, we investigate how to encode the image features of
mixture of subspaces image representation. Experimen-
tal results demonstrate that the database image features
can be encoded into less than several hundred bytes per
image without significantly degrading accuracy. These
results are comparable to those obtained by the state-of-
the-art encoding method for FVs [10].

The remainder of this paper is organized as follows.
Section 2 introduces the mixture of subspaces image rep-
resentation and proposes an image retrieval method that
utilizes it. Section 3 presents experimental results for
demonstrate the validity of the proposed method for some
large-scale public datasets. Section 4 investigates the
method for encoding the mixture of subspaces image rep-
resentation. Section 5 evaluates the performance of the
encoding method, and Section 6 presents conclusions and
suggestions for future work.

2 Mixture of Subspaces Image
Representation

2.1 Defining a Matching Score Based on
PPCA Mixture Models

Let Ii denote the i-th image to be stored in a database
and

Xi = {xi,1,xi,2, . . . ,xi,Ni} (1)

denote the set of local image descriptors extracted from
Ii, where Ni is the number of descriptors. Each local
descriptor is assumed to be aD-dimensional vector. Now,
assume that the local descriptors of Ii are distributed
according to a GMM with K mixtures:

p(x) =
K∑

k=1

πi,kN (x|µi,k,Σi,k), (2)

where N (x|µ,Σ) denotes a Gaussian distribution with
mean µ and covariance Σ. The parameter πi,k is the mix-
ture weight of the k-th Gaussian mixture component of
Ii, which satisfies 0 ≤ πi,k ≤ 1 and

∑K
k=1 πi,k = 1. The

parameters µi,k and Σi,k are the mean and covariance
matrix corresponding to the k-th mixture component of
Ii, respectively. We can then employ the simple idea of
using the likelihood function of the model (2) as a match-
ing score S(I(Q), Ii) to rank Ii with respect to any query
image I(Q). Let X(Q) = {x1,x2, . . . ,xN(Q)} denote the
set of local descriptors of I(Q), where N (Q) is the num-
ber of descriptors. Provided that xn are assumed to be
independent of each other, we employ the log-likelihood
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function as the score:

S(I(Q), Ii) =
N(Q)∑
n=1

log

{
K∑

k=1

πi,kN (xn|µi,k,Σi,k)

}
. (3)

In this approach, the model parameters πi,k,µi,k andΣi,k

(k = 1, 2, . . . ,K) constitute a feature to be stored into
the database for each database image. There are no con-
straints on the choice of covariance for mixture compo-
nents of the model (2). It may be unfavorable, however, to
adopt the full-covariance Gaussian model, as it requires a
considerable memory capacity to store the covariance ma-
trices for each database image. Conversely, the diagonal-
covariance model seems to be insufficient for representing
the local descriptor distribution. Therefore, we employ
the PPCA model [15, 16].
In the PPCA model, the covariance matrix Σ of (2) is

given as (subscripts are omitted)

Σ = WW⊤ + σ2I, (4)

whereW is aD×H matrix (H < D ) and σ2 > 0. Conse-
quently, the memory cost for representing each database
image is reduced in comparison with the full-covariance
GMM. For given samples, the maximum likelihood solu-
tion of µ is the sample mean, while those of W and σ2

are given as the following forms [15, 16]:

W = U(Λ− σ2I)
1
2R (5)

σ2 =
1

D −H

D∑
d=H+1

λd, (6)

where λ1 ≥ λ2 ≥ · · · ≥ λD are the eigenvalues of the
sample covariance matrix, Λ = diag(λ1, λ2, . . . , λH), U
is the D × H matrix composed of the H eigenvectors
corresponding to the H largest eigenvalues, and R is an
arbitrary H ×H orthogonal matrix.

2.2 Mixture of Subspaces Image Repre-
sentation

In the previous section, we defined a matching score based
on PPCA mixture models. While this model might be
appropriate to represent the local descriptor distribution,
the score (3) is too complex to compute for every database
image. Accordingly, we simplify (3) by introducing some
constraints and approximations into the model.
Under mixture models such as (2), the mixture com-

ponents to which x belongs are generally unknown. By
denoting zk ∈ {0, 1} as the random variable representing

whether x belongs to the k-th mixture (
∑K

k=1 zk = 1) and
z = (z1, z2, . . . , zk), z can be considered a latent variable
that should be inferred. Due to this nature of mixture
models, all of the K likelihoods N (xn|µi,k,Σi,k) must be

evaluated for each x. This is the most computationally
demanding part for our model, especially in the case of
large K. To alleviate the computational requirements,
we treat z as an observable according to the following
assumptions.

• The value z is only dependent on x for all database
images.

• The mean of the k-th mixture component is identical
for all database images: µi,k = µk.

Such conditions can be satisfied by applying a clustering
algorithm to local descriptors and fixing the correspond-
ing parameters before estimating the model parameters
of each database image. We adopt the K-means algo-
rithm to estimate µk and compute z. The mean µk is
estimated as a cluster centroid using a distinct dataset
from the database. The value z is determined for any
x by assigning x to one of the K clusters. Under these
conditions, the matching score, that is, the log-likelihood
function, is given as

S(I(Q), Ii) =
K∑

k=1

(
N

(Q)
k log πi,k

+
∑

n:zn,k=1

logN (xn|µk,Σi,k)

 , (7)

where N
(Q)
k denotes the number of descriptors assigned to

the k-th cluster. In (7), the first term in the summation
of k penalizes the discrepancy in the allocation of local
descriptors to each cluster between the query and the i-
th database image. Thus, this score can be regarded as
an extension of the conventional BoF approach, which
measures the distance between two histograms with K-
bins.

We further simplify (7) by introducing some approx-
imations. If the model parameters of each PPCA com-
ponent are estimated by maximum likelihood estimation
and hence the parameter W has the form of (5), the
log-likelihood function for the PPCA model is given as
follows:

logN (x|µ,Σ) = −1

2

(
D log 2π + log |Σ|

+
1

σ2

(
∥x− µ∥2 − ∥Λ− 1

2W⊤(x− µ)∥2
))

. (8)

For simplicity, we have chosen R = I. For the two terms
log |Σ| and Λ− 1

2W⊤ in (8), the following equations (9)
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and (10) hold.

log |Σ| =
H∑

d=1

log λd + (D −H) log σ2 (9)

Λ− 1
2W⊤

= diag

√
1− σ2

λ1
, . . . ,

√
1− σ2

λH

U⊤ (10)

First, let us assume that σ2 is equal, and
∑H

d=1 log λd

takes an identical value for every image. Then, log |Σ|
becomes a constant; therefore, this term can be dropped.
In addition, let us also assume that λH ≫ σ2. Then, (10)
is approximately equal to U⊤. Therefore,

logN (x|µ,Σ) ≈ 1

2σ2
∥U⊤(x− µ)∥2 + const. (11)

holds. The term ∥x − µ∥2 is constant since it takes an
equal value for every image. Hence, by substituting (11)
into (7) and omitting the constant terms, we obtain

S(I(Q), Ii) =
K∑

k=1

(
N

(Q)
k log πi,k

+
1

2σ2
k

∑
n:zn,k=1

∥U⊤
i,k(xn − µk)∥2

 . (12)

The parameter σ2
k, corresponding to σ2 of (6), is assumed

to have an identical value for all database images; there-
fore, it can be determined using a distinct dataset from
the database as µk. We propose to use (12) as the match-
ing score for image retrieval. As mentioned above, the
first term in the summation of k in (12) is a penalty for the
discrepancy of the distribution of local descriptors to K
clusters between the query and the i-th database image.
The second term is considered to measure the similarities
of the query descriptors xn with respect to the k-th sub-
space of the i-th database image. In this approach, the
features of each database image are represented by πi,k

and Ui,k. We refer to such image feature representation
as a mixture of subspaces image representation. In Sec-
tion 3.2, we experimentally confirm that the introduced
constraints and approximations do not degrade retrieval
accuracy of our approach.
The above treatment simplifies both model parameter

estimation and query processing. The matrix Ui,k can be
estimated through eigendecomposition of the correlation
matrix of the descriptors belonging to the k-th compo-
nent of Ii. The parameter πi,k can also be estimated from
the number of descriptors belonging to each component.
These are described in detail in Section 2.3. In query
processing, local descriptors are assigned to one of the

K components, so that the approximated log-likelihood
value is computed only once for each of them. Addition-
ally, it is worth noting that the computation of the score
(12) is computationally efficient since it almost consists
of basic arithmetic operations in contrast to the original
score (3) or FV.
As discussed in the next section, applying (12) as it

is on raw SIFT descriptors produces suboptimal results.
Hence, as proposed by [12, 10] for FV, PCA is applied
to the local descriptors to reduce their dimensionality.
We apply PCA to perform dimensionality reduction and
whitening on each of the clustered local descriptors as
follows:

x′
k = Λ̃

− 1
2

k Ũ⊤
k (x− µk), (13)

where Λ̃k is the D′ ×D′ diagonal matrix whose diagonal
elements are the D′ largest eigenvalues of E[(x−µk)(x−
µk)

⊤], and Ũk is the D × D′ matrix composed of the
corresponding eigenvectors. The resulting x′

k is the D′

dimensional vector. Then, by substituting x′
n,k for (xn−

µk) in (12), the matching score (12) can be rewritten as
follows:

S(I(Q), Ii) =
K∑

k=1

(
N

(Q)
k log πi,k

+
1

2σ2
k

∑
n:zn,k=1

∥U⊤
i,kx

′
n∥2

 . (14)

Note that Ui,k is the D′ ×H matrix in this equation. In
the case of FV, it is suggested that PCA dimensionality
reduction leads to better estimation for diagonal GMMs
because of its decorrelation and noise reduction effects
[10]. However, in our case, whitening combined with di-
mensionality reduction may be expected to enlarge the
distance between image subspaces.

2.3 Image Retrieval Method for Mixture
of Subspaces Image Representation

Here we summarize the image retrieval method utilizing
the proposed matching score and mixture of subspaces
image representation.

Preparation

It is necessary to estimate several parameters using a dis-
tinct set of images (learning set) from images to be stored
in the database.

1. Apply the K-means algorithm on local descriptors of
the learning set to obtain µk (k = 1, 2, . . . ,K).

2. Perform PCA on the clustered data to obtain Λ̃k and
Ũk (k = 1, 2, . . . ,K).
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3. Compute σ2
k as the average of the values obtained by

(6) for each image in the learning set.

Storing Images in the Database

The storage procedure for image Ii is as follows.

1. Extract local descriptors from Ii and determine their
cluster assignments.

2. Compute πi,k (k = 1, 2, . . . ,K). These are deter-
mined so that

πi,k = max(Ni,k, 0.1)/

K∑
k=1

max(Ni,k, 0.1). (15)

The constant 0.1 is used to avoid log 0.

3. Compute Ui,k (k = 1, 2, . . . ,K). The columns of
Ui,k are given as the eigenvectors corresponding to
the H largest eigenvalues of the following D′ × D′

matrix Ci,k:

Ci,k =
1

Ni,k

∑
n:zi,n,k=1

x′
i,n,kx

′⊤
i,n,k, (16)

where Ni,k denotes the number of descriptors in Xi

assigned to the k-th cluster. If the eigenvalues are
too small or Ni,k = 0, the corresponding columns
should be 0.

4. Store the parameters πi,k and Ui,k (k = 1, 2, . . . ,K)
in the database.

Processing a Query

Given a query I(Q), the search for the most similar images
in the database is performed as follows.

1. Extract local descriptors from I(Q) and determine
their cluster assignments.

2. Compute the matching scores (14) for all database
images. Then, output the order of relevance (de-
creasing order of the scores) of the images.

3 Evaluation of The Proposed Im-
age Representation

In this section, we evaluate the performance of the im-
age retrieval method using the proposed mixture of sub-
spaces image representation. The results are compared
with those obtained by the state-of-the-art FV method
[10].

3.1 Datasets and Experimental Proce-
dure

Datasets

In all the experiments, the following four public datasets
were employed.

1. PASCAL VOC: This dataset consists of 42467 im-
ages collected from PASCAL VOC datasets [17]. We
collected all the images from VOC2007 to VOC2012
and removed any duplicates. This was used for con-
structing the learning set for learning the parameters
(K-means clustering, GMM estimation, etc.).

2. INRIA Holidays [7, 18]: This dataset contains 1491
images of 500 different scenes; 991 images were used
to construct a database, and the remaining 500 im-
ages were used for queries to evaluate the perfor-
mance of image retrieval. The images were resized
so that the maximal length of the longest side was
equal to or less than 1024 pixels.

3. University of Kentucky Recognition Benchmark Im-
ages (UKB) [19, 20]: This dataset consists of 2550
objects, each having four images. These images were
used as an additional dataset to evaluate the perfor-
mance of image retrieval.

4. Flickr1M [21]: This dataset consists of over one mil-
lion images that can be downloaded from Flickr. At
the time of this writing, however, a portion of the
images could not be retrieved; therefore, we em-
ployed 980 thousand randomly selected images from
all available images. These images were merged with
the Holidays images to construct datasets for large-
scale retrieval experiments.

Local Descriptor Extraction and Preprocessing

Local image descriptors are extracted from the images
in the above datasets following the setup of [10]. The
Hessian-affine detector [22] and the SIFT descriptor [1]
are employed to extract and describe local image fea-
tures. We used the software available in [23]. The sam-
pled local descriptors from the VOC dataset were used
for estimating the parameters of the proposed and FV
image representations. The methods for estimating pa-
rameters in the proposed image representation are de-
scribed in Section 2.3. Here we used the standard K-
means algorithm. For the FV image representation, PCA
was first applied to reduce descriptor dimensionality to
D′. Then, this D′ dimensional data was used for estimat-
ing the diagonal-covariance GMM with K mixture com-
ponents as described in [10]. We only use the terms with
respect to the mean. In addition, power normalization
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with α = 0.5 and the L2-normalization were also applied
to the FVs as described in [10, 12].

Evaluation Criteria

The performance of the proposed representation was eval-
uated in terms of image retrieval accuracy against the
number of variables per database image in the evaluation
datasets. For the Holidays dataset, we measured accu-
racy using the mean average precision (mAP). The aver-
age number of relevant images, including the query itself
ranked in the top four search results, was used on the
UKB dataset. We denote the latter measure as “KS”.
The number of floating-point variables of the proposed
representation is K(HD′ + 1) per image, while that of
FV representation is simply KD′, because we only use
the terms with respect to mean, as described in [10].

3.2 Effects of the Constraints and Di-
mensionality Reduction

Effects of the Constraints and Approximations on
the Models

First, we confirm the validity of our approach using
the likelihood functions of mixture of PPCA models as
matching scores for image retrieval. We compare the re-
trieval accuracies obtained by the following three models
with those obtained by using the FV representation:

• Fully image-wise PPCA mixture: A mixture of
PPCAmodel was fitted by the EM algorithm for each
database image and its log-likelihood function was
used for scoring. Since such image-wise EM learning
took computation time, we applied the learning only
once for each image instead of trying different initial
values.

• Constrained PPCA mixture: First, a single PPCA
mixture model was fitted for local descriptor distri-
bution sampled from the learning dataset. It was
used for determining the component assignments (re-
sponsibilities of the K mixture components) of local
descriptors. For each database image, the parame-
ters πi,k were estimated as the ratios of the sum of
the responsibilities, and then K PPCA models were
fitted for each component on the condition that their
means were fixed at that of the above single model:
µi,k = µk.

• Mixture of subspaces: This model corresponds to the
score of (12). The above single PPCA model was re-
placed with the K-means clustering, and each local
descriptor was assigned to only one of the clusters.
The PPCA models were simplified through the ap-
proximation as described in Section 2.2.

Table 1: Effects of the constraints and approximations on
the models. Each accuracy shows the mAP obtained for
the Holidays dataset.

Model accuracy

fully image-wise PPCA mixture K = 16, H = 2 0.631

constrained PPCA mixture K = 16, H = 2 0.650

mixture of subspaces K = 16, H = 2 0.663

Fisher Vector K = 16 0.626

Fisher Vector K = 128 0.661

Table 2: Effects of dimensionality reduction and whiten-
ing. Each value shows the mAP obtained by the proposed
method for the Holidays dataset.

K = 16,H = 2 D′ = 16 32 64 128

w/o whitening 0.654 0.669 0.666 0.663

with whitening 0.708 0.722 0.724 0.670

In this experiment, we did not apply dimensionality re-
duction to local descriptors in all cases. For the FV rep-
resentation, we did not apply the power normalization
either.

Table 1 indicates the mAP values for the Holidays
dataset. The fully image-wise PPCA mixture model
shows about the same accuracy as the FV with the
same number of mixture components, while the other two
PPCA-based models obtain higher accuracies. Specifi-
cally the proposed method attains comparable accuracy
with the FV with much larger number of components.
These results suggest the potential of our approach. Be-
sides, they also imply that the fully image-wise PPCA
mixture model might be redundant for describing lo-
cal descriptor distribution of each individual image since
there is little accuracy improvement compared with the
FV. The introduced constraints and approximations are
significant in terms of image retrieval accuracy as well as
computational efficiency.

Dimensionality Reduction and Whitening

We investigate the influence of dimensionality reduction
and whitening using the Holidays dataset. Table 2 shows
the results for different settings. In the case of D′ = 128,
D = 128 dimensional local descriptors were not rotated
and were used as is (without whitening) or were used after
standardizing each element (with whitening). Although
the results obtained are comparable to the FV represen-
tation without whitening (see Table3), they are clearly
improved by combining whitening with dimensionality re-
duction. According to these results, we selected D′ = 32
in the following experiments.
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Figure 1: Image retrieval accuracy as a function of the
number of variables for representing each database image.

3.3 Image Retrieval Experiments

Experiments on the Holidays and UKB datasets

We compare the image retrieval performance of the pro-
posed method with the FV-based method. The results
are presented in Fig. 1 and Table 3. The dimensional-
ity D′ was set to 32 or 64 for the FV representation. It
can be observed that the proposed image representation
outperforms the FV representation for both the Holidays
and UKB datasets. In the proposed method, the two
parameters K and H should be set in advance. These ex-
perimental results suggest that H can be fixed at a small
number (e.g., 2 or 3), while a larger number is preferred
for K.

Large-Scale Experiments

In order to evaluate the scalability of the proposed
method, we conducted the experiments employing large-

Table 3: Comparison of the proposed method with the
FV-based method. # var: the number of variables for
representing each database image; mAP on the Holidays
dataset; and KS on the UKB dataset.

#var K H Holidays UKB

264 8 1 0.618 3.08

520 8 2 0.673 3.33

776 8 3 0.686 3.42

proposed 1552 16 3 0.728 3.55

(D′ = 32) 3104 32 3 0.752 3.52

6208 64 3 0.780 3.66

8256 64 4 0.786 3.66

10304 64 5 0.790 3.65

512 16 - 0.633 3.30

FV 1024 32 - 0.669 3.39

(D′ = 32) 2048 64 - 0.693 3.46

4096 128 - 0.698 3.49

1024 16 - 0.664 3.33

FV 2048 32 - 0.681 3.42

(D′ = 64) 4096 64 - 0.701 3.48

8192 128 - 0.705 3.50

scale image databases. The databases were constructed
by merging a fixed number (10000, 100000 or 980000) of
randomly chosen images from the Flickr1M dataset with
991 database images of the Holidays dataset. The re-
maining 500 images of the Holidays dataset were used for
queries.

Fig. 2 compares the retrieval accuracies of the proposed
method with those of the FV-based method as a function
of the number of images in the database. The parameter
H of the proposed method was set to 3. Accuracy degra-
dation of the proposed method shows the same trend as
that of the FV-based method. Accordingly, we can con-
firm the superiority of the proposed image representation
to the FV representation in terms of accuracy and dimen-
sion. In this experiment, for instance, the FV representa-
tion needs 8192 variables (D′ = 64 and K = 128), while
the proposed representation requires only 1552 variables
(D′ = 32,K = 16 and H = 3) to attain higher accuracy.

4 Coding the Mixture of Sub-
spaces Image Representation

In the previous section, we confirmed the efficiency of the
proposed image retrieval method primarily in terms of re-
trieval accuracy. However, for large-scale image retrieval,
it is desirable to further reduce the memory costs while
retaining the information of each database image, which
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Figure 2: Image retrieval accuracy as a function of the
database size.

consists of the D′ ×H matrices Ui,k and the parameters
πi,k (k = 1, 2, . . . ,K). Hence, we investigate how to en-
code the information into compact code (e.g., less than
several hundred bytes per database image).

4.1 Encoding Subspaces

The columns of matrix Ui,k span the H-dimensional sub-
space of the local descriptors that belong to the k-th clus-
ter. Suppose that this subspace can be approximated us-
ing H basis vectors vk,ℓ1 ,vk,ℓ2 , . . . ,vk,ℓH chosen from the
basis dictionary:

Vk = {vk,1,vk,2, . . . ,vk,L} (17)

The basis dictionary is independently constructed from
the database. It is assumed that Vk is overcomplete,
and each basis vector has unit length: ∥vk,ℓ∥ = 1 (ℓ =
1, 2, . . . , L). See Section 4.2 for a description of the ba-
sis dictionary construction. Then, we can store only the
set of H indices IH = {ℓ1, ℓ2, . . . , ℓH} on behalf of the
D′ × H floating-point numbers. One method to obtain
such an index set is to minimize the following objective
function with respect to any IH :

N∑
n=1

∥∥∥∥∥x′
n −

∑
ℓ∈IH

yn,ℓvℓ

∥∥∥∥∥
2

(18)

where yn,ℓ denotes the coefficient such that yn,ℓ = 0 for
ℓ /∈ IH . We omit the subscripts i and k and reassign n
so that N denotes the number of local descriptors corre-
sponding to Ni,k in Section 2. It should be noted that,
provided that N = 1, this problem becomes a type of
sparse coding problem. However, if N > 1, it is some-
what different because in this case it is necessary to use
the identical subset of the dictionary for all x′

n, i.e., the
location of the non-zero coefficients must be the same.

In the same as in the case of conventional sparse cod-
ing problem, the optimization of (18) is difficult in terms
of computational complexity. By considering the well-
known matching pursuit algorithm [24], we propose to
use the following greedy algorithm that selects the basis
vectors successively. Here Ih denotes the set of indices
chosen through the h-th iteration, and rn,h denotes the
residual of the approximation of x′

n using the h chosen
basis vectors.

1. Initialize I0 and rn,0 as I0 = ∅ and rn,0 = x′
n (n =

1, 2, . . . , N), respectively.

2. Iterate the following procedure for h = 1, 2, . . . , H:

(a) Find the index of the optimal basis ℓ∗h from
{1, 2, . . . , L} − Ih−1:

ℓ∗h = argmin
ℓ/∈Ih−1

N∑
n=1

min
y∈R

∥rn,h−1 − yvℓ∥2

= argmin
ℓ/∈Ih−1

N∑
n=1

∥rn,h−1 − (v⊤
ℓ rn,h−1)vℓ∥2

= argmax
ℓ/∈Ih−1

N∑
n=1

(v⊤
ℓ rn,h−1)

2. (19)

(b) Compute Ih and rn,h:

Ih = Ih−1 ∪ ℓ∗h (20)

rn,h = rn,h−1 − (v⊤
ℓ∗h
rn,h−1)vℓ∗h

. (21)

Thus, the H-dimensional subspace of {x′
n} can be ap-

proximated by the subspace spanned by the chosen basis
vectors vℓ∗1

,vℓ∗2
, . . . ,vℓ∗H

. Provided that the chosen basis
vectors are almost orthogonal to each other, we can re-
place Ui,k with the matrix Ûi,k = (vℓ∗1

vℓ∗2
· · ·vℓ∗H

). The

columns of Ûi,k are indexed by integers; therefore, we can
encode Ui,k compactly.

4.2 Learning the Basis Dictionary

To construct the dictionary of basis vectors Vk, we apply
a type of K-subspace clustering method [25, 26, 27] pro-
vided that the dimensionality of each subspace is set to 1.
However, conventional methods find the nearest subspace
for each individual input vector rather than for a set of
vectors. Hence, the obtained basis vectors may not nec-
essarily be optimal for our objectives. Thus, we examine
the following K-subspace clustering variant. The matrix
Ci denotes the correlation matrix of the local descriptors
(assigned to a cluster) of the i-th image in the learning
set (the subscript k is omitted, cf. (16)).

1. Initialize the dictionary V = {v1,v2, . . . ,vL}.
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2. Find the cluster index ℓ∗i ∈ {1, 2, . . . , L} for each of
the images as follows:

ℓ∗i = argmax
ℓ

v⊤
ℓ Civℓ (22)

3. Update the dictionary so that each vector vℓ is equal
to the eigenvector corresponding to the largest eigen-
value of the following matrix (ℓ = 1, 2, . . . , L):

C̃ℓ =
∑

i:ℓ∗i =ℓ

Ci (23)

4. Repeat 2) and 3) until the termination condition is
met.

If each Ci is obtained from only one descriptor, the algo-
rithm coincides with the K-subspace clustering algorithm
for one-dimensional subspace [26]. We apply this algo-
rithm to the distinct learning dataset from the database
to construct K basis dictionaries V1, V2, . . . , VK .

4.3 Encoding the Mixture of Subspaces
Image Representation

In the proposed image representation, each database im-
age is represented by Ui,k and πi,k (k = 1, 2, . . . ,K).

The matrix Ui,k is approximated by Ûi,k as described

in the previous section. Each column of Ûi,k can be
represented as an integer from 0 to L (0 for the case of

Ni,k = 0). Hence, the length of the code for Ûi,k becomes
H log2 (L+ 1) = HBV bits. On the other hand, πi,k is
approximated by π̂i,k, which is computed from the quan-

tized number of local descriptors N̂i,k using (15), where

N̂i,k =

⌊
(2BN − 1)Ni,k/max

k
Ni,k + 0.5

⌋
(24)

is a BN bit integer. In other words, we encode Ni,k rather
than πi,k. Consequently, the total code length for one
database image becomes K(HBV +BN ) bits.
Thus, the matching score (14) is approximated as fol-

lows:

Ŝ(I(Q), Ii) =
K∑

k=1

(
N

(Q)
k log π̂i,k

+
1

2σ2
k

∑
n:zn,k=1

∥Û⊤
i,kx

′
n∥2

 . (25)

It is worth noting that the term ∥Û⊤
i,kx

′
n∥2 is the

sum of H values chosen from the L-sorts of val-
ues (v⊤

1 x′
n)

2, (v⊤
2 x

′
n)

2, . . . , (v⊤
Lx′

n)
2. Hence, the num-

ber of computations required to obtain the dot

product for each vector x′
n is reduced from H ×

(number of database images) to L. Therefore, the pro-
posed encoding method reduces both the memory cost
and computational cost for query processing.

Here we summarize the image search method for the
encoded mixture of subspaces image representation.

Preparation

In addition to the three steps described in Section 2.3,
the following preparation is required.

4. Construct the basis dictionaries V1, V2, . . . , VK using
a distinct set of images from the images that will be
stored in the database.

Storing Images in the Database

The storage procedure for image Ii is as follows.

1. Extract local descriptors from Ii and determine their
cluster assignments.

2. Compute N̂i,k by (24) (k = 1, 2, . . . ,K).

3. Compute the indices for Ûi,k (k = 1, 2, . . . ,K).

4. Store the code corresponding to N̂i,k and Ûi,k (k =
1, 2, . . . ,K) in the database.

Processing a Query

Given a query I(Q), the search for the most similar images
in the database is performed as follows.

1. Extract local descriptors from I(Q) and determine
their cluster assignments.

2. Compute the matching scores (25) for all database
images. Then, output the order of relevance of the
images.

5 Experiments on the Proposed
Coding Method

We examine the performance of the image retrieval
method using the encoded mixture of subspaces image
representation and compare the results with those ob-
tained by the asymmetric distance computation (ADC)
approach for FVs using the product quantization method
[5, 10]; hereafter we refer to this method as the FV+ADC
method.
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5.1 Datasets and Experimental Proce-
dure

We employed the same datasets and local descriptor ex-
traction methods described in Section 3. The accuracy
evaluation measure is also identical to the previous ex-
periments (mAP and KS for the Holidays and the UKB
datasets, respectively). The dimensionality D′ was also
set to 32.

The learning of the basis dictionary was performed us-
ing the VOC dataset. For learning, we sampled only the
data with correlation matrices Ci of equal or higher rank
than D′/2. The number of basis vectors L for each dic-
tionary was 1023. The learning was terminated after 10
iterations and was repeated 5 times with different ini-
tial conditions, keeping the best partition that gives the
largest value of the following objective function.

L∑
ℓ=1

∑
i:ℓ∗i =ℓ

v⊤
ℓ Civℓ (26)

We set L to 1023 so that BV = 10. Although we also
tested the case of BV = 8 (L = 255), there was marginal
difference between these two cases. Therefore we only
show results for BV = 10. We have also chosen BN to be
5. In the preliminary experiment, if BN ≥ 4, we observed
only a slight decline of accuracy compared to the results
without quantization.

For the FV+ADC method, we adopted two parameter
settings, ADC 16 × 8 and 256 × 10, according to [10].
The number of GMM components are K = 64 and 256,
respectively. The KD′ (D′ = 64) dimensional Fisher vec-
tors were transformed to 96 and 2048 dimensional vectors
by PCA and subsequent random orthogonal projection,
respectively. Then these vectors were divided into 16 and
256 subvectors, and each subvector was quantized in 8
and 10 bits, respectively. Parameters of these processes
were optimized using the VOC dataset.

In order to evaluate the scalability of the proposed cod-
ing method, we also conducted experiments using the
same large-scale datasets as described in Section 3.1. Be-
sides the retrieval accuracy we have measured the CPU
time required for query processing. These experiments
have been performed on a single processor core of a PC
with an Intel Core i7 3.4GHz processor and 32GB mem-
ory. It should be noted that the query processing was per-
formed by exhaustive search in these experiments, that
is, matching scores were computed exhaustively for ev-
ery image in the database. We did not adopt the non-
exhaustive search method for the ADC approach (IV-
FADC) [5, 10] or any other ANN search techniques for
both of the FV+ADC method and the proposed method.
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Figure 3: Image retrieval accuracy using the encoded mix-
ture of subspaces image representation.

5.2 Results

Experiments on the Holidays and UKB datasets

Fig. 3 and Table 4 show the experimental results. By com-
paring the accuracy values in Table 4 with those shown
in Table 3, we can confirm that the proposed method
can encode the mixture of subspaces image representa-
tion into less than several hundred bytes without signif-
icantly degrading accuracy. When K = 64 and H = 3,
for instance, the accuracies reduce from 0.780 (Holidays)
and 3.66 (UKB) to 0.718 and 3.49, respectively, by en-
coding the 6208-dimensional image representation into a
280-bytes code. We also suggest that H can be fixed at 2
or 3, as was the case in the previous experiments. Com-
pared to the results obtained by the FV+ADC method,
the proposed method outperforms under the condition of
longer code length, though this is not the case for shorter
code length.
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Table 4: Comparison of the proposed method with the
FV+ADC method. mAP on the Holidays dataset and
KS on the UKB dataset.

byte K H Holidays UKB

15 8 1 0.506 2.55

proposed 25 8 2 0.571 2.89

D′ = 32 35 8 3 0.595 3.03

BV = 10 70 16 3 0.649 3.28

BN = 5 140 32 3 0.683 3.41

280 64 3 0.718 3.49

360 64 4 0.724 3.51

FV+ADC 16× 8 16 64 - 0.614 3.18

256× 10 320 256 - 0.675 3.44

Large-Scale Experiments

We evaluate the retrieval accuracy and the retrieval time
of the proposed method using the encoded representation
on large-scale databases. Fig. 4 compares the retrieval
accuracies with those obtained by the FV+ADC method.
From the figure, it is observed again that the proposed
method is comparable to the state-of-the-art FV+ADC
method when each database image is allowed to have sev-
eral hundreds bytes code. For instance, the accuracies of
320 bytes code obtained by FV+ADC 256 × 10 are at-
tained by 140 bytes in the case of the proposed method
(K = 32 and H = 3).

On the other hand, Table 5 shows the average of the
retrieval times for each of 500 queries from the Holidays
dataset. For the proposed method, we focus on two cases:
(K,H) = (32, 3) and (64, 3). The former is chosen be-
cause it attains similar accuracies to FV+ADC 256× 10
with shorter code length, while the latter is chosen be-
cause it attains similar code length with higher accura-
cies (cf. Table 4). In Table 5, the time for comput-
ing local descriptors is excluded since it is identical for
both methods. The values t1 correspond to the CPU
times required for computation that are independent of
the database size. For the proposed method, such com-
putation consists of the processes from the cluster as-
signment for the local descriptors till the calculation of
the values

∑
n:zn,k=1(v

⊤
ℓ x

′
n)

2 for k = 1, 2, . . . ,K and
ℓ = 1, 2, . . . , L. For the FV+ADC method, it consists of
the processes from the calculation of FV till the distance
computation among the subvectors and their prototypes.
The values t2 are the CPU times that are dependent on
the database size. In these experiments, they correspond
to the processing time for exhaustively computing the
matching scores for every image in the database. Hence
they are linear with respect to the database size. As one
can see from the table, both t1 and t2 of the proposed
method are smaller than those of the FV+ADC method.
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Figure 4: Image retrieval accuracy using the encoded mix-
ture of subspaces image representation as a function of the
database size.

Table 5: Retrieval time. t1 and t2: processing times (sec)
independent and dependent of database size.

DBsize method t1 t2 t1 + t2

proposed K = 32, H = 3 0.23 0.0017 0.23

10991 K = 64, H = 3 0.25 0.0041 0.26

FV+ADC 256× 10 0.97 0.0055 0.97

proposed K = 32, H = 3 0.23 0.015 0.24

100991 K = 64, H = 3 0.25 0.035 0.29

FV+ADC 256× 10 0.97 0.049 1.0

proposed K = 32, H = 3 0.23 0.15 0.37

980991 K = 64, H = 3 0.25 0.34 0.59

FV+ADC 256× 10 0.96 0.47 1.4

In particular, t1 of the FV+ADCmethod is large since the
computation of FV takes high computational cost. In the
proposed method, in contrast, almost all computation for
query processing consists of basic arithmetic operations.
Therefore, the proposed method shows competitive per-
formance compared with the FV+ADC method in terms
of retrieval time as well as retrieval accuracy. In these ex-
periments, we did not apply any ANN search technique
for reducing the number of candidate images for which
to compute the matching scores. Jégou et al. demon-
strated that their IVFADC method can scale up to 100
million images [10]. Similar techniques are expected to
be effective for the proposed method since our image fea-
ture representation has similar structure to their ADC
method.

6 Conclusion

We introduced the mixture of subspaces image represen-
tation, which obtains both high accuracy and low mem-
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ory cost in large-scale image retrieval. This representa-
tion outperforms the state-of-the-art FV-based approach
in both plain and encoded representation. These results
imply the advantage of our approach in which the distri-
bution of local descriptors is modeled for each database
image, and the likelihood function of each model is used
for matching a query to the database images. However,
whether this approach is effective for other problems, such
as image classification and object recognition, remains an
open question. In our preliminary investigation, a simple
image-to-image nearest neighbor classification applying
our approach did not produce competitive classification
accuracy with the state-of-the-art such as the method us-
ing linear support vector machine with FV representation
[12]. This observation coincides with the results reported
in the case of descriptor-by-descriptor matching based
method [28]. One of our future problems is to investigate
how to leverage the image classification accuracy of our
approach. As suggested by several researchers [29, 30], it
might be necessary to introduce some kernelization tech-
nique or to develop an feature mapping method so that
we can utilize powerful discriminative learning methods
such as support vector machine.
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